If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12+96x-16x^2=0
a = -16; b = 96; c = +12;
Δ = b2-4ac
Δ = 962-4·(-16)·12
Δ = 9984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9984}=\sqrt{256*39}=\sqrt{256}*\sqrt{39}=16\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{39}}{2*-16}=\frac{-96-16\sqrt{39}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{39}}{2*-16}=\frac{-96+16\sqrt{39}}{-32} $
| 3/2x+5/x=13/(x+4) | | 8.3(c-3.1)=-37.35 | | 18=9x/20 | | 2x-1=4x+11 | | -6=16+-18y+y | | 2.25t5=13.5t+14 | | 11/6=n+7/9 | | 4(x-4)^2+x^2=x(x+79)-43x | | 4x−2=−14 | | 5/3-4/3x+4=8/3x-7+4/3-2/3 | | x/5=48/30 | | 5/6x-3/20=-1/6x-2/5 | | 4(2x-6)-(3x+4)=7 | | 8(x+3)-4=4x+4(4+x) | | 24=6(x+2 | | x+3=1/2(x-2) | | 3x3x2=6x | | 100/(2x)=0 | | Y=60+.25b | | 6(-x–3)=24 | | -3x+30x-2=-12 | | 7y-8=7y-y | | 5+p=17 | | 9r-5r+2=8r+2-r | | 0.2x^2-0.2x-0.2=0 | | 10+5x4=x | | 8x+5x=1460 | | x+5x-10=9+2x+-7 | | 64=2(2w-7)+2w | | 1/2y+1/2y=3 | | 4(3x-1)+4=-24 | | 8y+5-6y=4+y+5 |